Separate variable blow-up patterns for a reaction–diffusion equation with critical weighted reaction

نویسندگان

چکیده

We study the separate variable blow-up patterns associated to following second order reaction–diffusion equation: ?tu=?um+|x|?um,posed for x?RN, t?0, where m>1, dimension N?2 and ?>0. A new explicit critical exponent ?c=2(m?1)(N?1)3m+1is introduced a classification of profiles is given. The most interesting contribution paper showing that existence behavior split into different regimes by ?c also depends strongly on whether N?4 or N?{2,3}. These results extend previous works authors in N=1.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up for a reaction-diffusion equation with variable coefficient

We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

Multiple blow-up for a porous medium equation with reaction

The present paper is concerned with the Cauchy problem { ∂tu = ∆u + u in R × (0,∞), u(x, 0) = u0(x) ≥ 0 in R , with p,m > 1. A solution u with bounded initial data is said to blow up at a finite time T if lim supt↗T ‖u(t)‖L∞(RN ) = ∞. For N ≥ 3 we obtain, in a certain range of values of p, weak solutions which blow up at several times and become bounded in intervals between these blow-up times....

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Critical Exponents for a Semilinear Parabolic Equation with Variable Reaction

In this paper we study the blow-up phenomenon for nonnegative solutions to the following parabolic problem: ut(x, t) = ∆u(x, t) + (u(x, t)) , in Ω× (0, T ), where 0 < p− = min p ≤ p(x) ≤ max p = p+ is a smooth bounded function. After discussing existence and uniqueness we characterize the critical exponents for this problem. We prove that there are solutions with blow-up in finite time if and o...

متن کامل

Blow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2022

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2021.112740